
Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Attack on the Vigenère Cipher Key Through Index of

Coincidence Optimization Based on Dynamic

Programming

M. Rayhan Farrukh - 13523035

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

E-mail: rayhan.farrukh@gmail.com, 13523035@std.stei.itb.ac.id

Abstract—Modern cryptographic algorithms are built on

complex mathematical principles, which ensures the safety of

information exchanged on the internet. In this paper, we will

discuss why such complex calculations are required for security by

examining an example of a strong classical cipher that can be

broken easily by modern statistical and algorithmic methods.
Through empirical testing on a self implemented program, it can

be seen that not only is the Vigenère cipher broken efficiently with

the solver, it is also sufficiently easy to implement the solver in a

short amount of time. This highlights the importance of adopting a

stronger more mathematically sound cryptographic schemes.

Keywords—Vigenère cipher, Dynamic Programming, Index of

Coincidence, Goodness of Fit Test, Levenshtein Distance

I. INTRODUCTION

In today’s digital age, most interaction is done digitally

through networks of computers connected to one another

through intricately designed web most commonly known as the

internet. In order to communicate, we need to send data through

this network so that it can reach whichever party we want it to.

During this transmission process however, the data that we send

is vulnerable to hijacking or Man-in-the-middle attacks that

leverages the insecurity and the open nature of the internet. And

for that reason, many schemes are put in place in order to ensure

the safety and security of the data that we send.

One such commonly used scheme is cryptography. A

technique that defaces or obfuscates data so that it can only be

read by certain parties. In that regard, cryptography is very

powerful to secure data, if implemented correctly.

The study of the strengths and weaknesses of cryptographic

systems is known as cryptanalysis. While modern cryptographic

schemes are computationally complex and secure, the analysis

of classical ciphers provides insight into the fundamental

principles of cryptography for information security. This paper

focuses on a historically significant cryptographic scheme that

once was touted as “impossible of translation”, the Vigenère

cipher. We will present and implement a computational method

for the cryptanalysis and breaking of this cipher, demonstrating

how modern statistical and algorithmic techniques can

systematically destroy and render the cipher useless.

II. THEORETICAL FOUNDATION

A. Cryptography

Cryptography is a technique of obscuring information in order

to secure it from being read or accessed by unauthorized parties.

It usually works by processing the original information through

some kind of algorithm that defaces it, called the encryption

process. This defaced version of the information is called the

ciphertext. If any unauthorized parties come across this

ciphertext they would not be able to understand it, therefore

securing the information.

In order for cryptography to be meaningful however, it needs

to be able to be reversed so that authorized parties can still read

or understand the data, this process is called decryption. In order

for a cryptographic scheme to be any good, it needs to be strong

enough that not anyone can just decrypt the ciphertext.

B. Caesar Cipher

An example of one of the earliest and most popular classical–

albeit simple–cryptographic scheme is the caesar cipher, named

after the roman emperor Julius Caesar. According to records,

Caesar would use this cipher with a shift of three in order to

conceal significant millitary messages.

This cipher works by shifting each letter in a text by a certain

shift amount. For example, if the shift used is three, if the

original letter is ‘A’ then shifting it using the Caesar cipher will

result in the cipher text ‘D’, which is the third letter that comes

after ‘A’. The formula for casear cipher is the following.

𝐶 = 𝑃 + 𝑆

Where C is the letter of the ciphertext, P is the letter of the

plaintext, and S is the shift value.

mailto:rayhan.farrukh@gmail.com
mailto:13523035@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Figure 1. Example of caesar cipher with shift 3

Source: Author’s documentation

Due to it’s simplicity, this cipher is never utilized for any

serious securite communication anymore, a fact that is true for

all other classical ciphers. Despite that fact, it can still be

beneficial to examine and study these classical ciphers.

C. Vigenère Cipher

Efforts have been made to improve caesar cipher’s security in

the past, by incorporating more complex substitution method

while still adhereing to the core principle of the caesar cipher.

One such improvement is the Vigenère Cipher.

The Vigenère cipher uses the same principle of caesar cipher,

that is to shift the plaintext by a certain amount. However, in

Vigenère cipher, the amount of shift is not uniform across the

text. The shift is determined by a key string, where the index of

the alphabets of the string determines the shift amount.

For example, if the key is ‘ABCE’, then the first letter in the

plaintext is shifted by 0 (the index of the letter ‘A’ starting from

0), the second by 1, third by 2, and fourth by 4. If the length of

the plaintext is longer than that of the key, then the shift will

wrap back to the first letter of the key.

Figure 2. Example of Vigenère cipher’s key-to-plaintext’s

interaction

Source: Author’s documentation

The Vigenère cipher gained a reputation for it’s strength. In

1917, Scientific American describes the cipher as “impossible of

translation”, a description not fitting for it as the Vigenère cipher

has been occasionally broken as early as the 16th century. In this

paper, we will see one method for efficient deciphering of the

Vigenère cipher

D. Dynamic Programming

Dynamic Programming is a problem solving method that

leverages overlapping subproblems and the storage of the

solution for such problems in order to cut down unnecessary or

redundant calculations regarding those subproblems.

In general, the necessary conditions for a problem to be

solvable using dynamic programming is to have the following

properties.

1. Optimal Substructure

This property means that the main problem’s optimal

solution can be constructed from the optimal solution of the

smaller subproblems that builds it. This property ensures that

the solution can be build up piece by piece

2. Overlapping Subproblems

This property means the problem can be broken down into

subproblems that are reused multiple times. Dynamic

programming works by storing the solution of such problems

so that it does not have to be calculated each time it is reused.

The approaches used in dynamic programming can be divided

into two, forward and backward.

1. Forward (Tabulation)

Also known as the bottom-up approach, works by solving a

problem starting from the smallest subproblem and working

our way up iteratively towards the final solution. Each

subproblem’s solution is stored in a table to be used in the

next iteration, with the final entry of the table corresponding

to the solution of the main problem

2. Backward (Memoization)

Also known as top-down approach, begins with the main

problem and uses recursion to break it down into smaller

ones with caching used to store the result of each

subproblems. If the solution of the subproblem exists in the

cache, the recursion is returned from, ensuring the avoidance

of redundant calculations.

E. Index of Coincidence

The Index of Coincidence (IC) is a statistical tool used to

measure the probability that any two randomly chosen letter in

a text will be the same. This probability value helps to determine

whether the text is written in a natural language or consists of

random gibberish. The formula for IC calculation is the

following.

𝐼𝐶 =
∑ 𝑛𝑖(𝑛𝑖 − 1)
𝑐
𝑖=1

𝑁(𝑁 − 1)

(1)

Where c is the size of the alphabet (c = 26 for English’s

alphabet), ni is the frequency of the i-th letter of the alphabet,

and N is the length of the text.

A high value of the IC indicates that the text is in natural

language (0.067 for English) while low IC indicates that the text

is likely to be random. This is due to the fact that natural

languages tend to have uneven distribution of the letters. This

fact is useful for cryptanalysis in order to decipher a ciphertext

based on substitution ciphers.

F. Goodness of Fit Test

The Goodness of Fit Test is a statistical tool to determine how

well a set of observed data matches that of a known, theoretical

distribution of data, called the expected data. In essence it tests

whether the data we observed look like the data we expected to

observe.

In the context of the Vigenère cipher’s cracker, it is used to

test whether the cipher’s decryption matches the distribution of

the English language’s letter distribution. The variation used is

the Pearson’s Chi-Square test which uses the chi-squared

distribution for hypothesis testing. The formula used is as

follows.

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

𝑛

𝑖=1

(2)

Where Oi is the i-th observed data and Ei is the i-th expected

data.

This test will strengthen confidence that the deciphered text

is not a product of random chance, but rather a meaningful

message in the English language.

https://www.researchgate.net/profile/Olanrewaju-Babatunde/publication/384482269/figure/fig2/AS:11431281281150092@1727770465708/Plaintext-and-the-Corresponding-Ciphertext-using-Caesar-Cipher-with-Key-1.jpg

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

G. Levensthein Edit Distance

The Levenshtein distance is the measurement of the

difference between two string sequences. The measurement of

the edit distance is done by calculating the minimum number of

single character edits (insertions, deletions or substitutions)

needed to transform a string into the other string being

compared. The formula for the Levenshtein edit distance is as

follows.

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) =

{

 max(𝑖, 𝑗)

min {

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗 − 1) + 1

𝑙𝑒𝑣𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1𝑎𝑖≠𝑏𝑗

if min(i,j) = 0

otherwise

(3)

Where a and b are the strings being compared, and i and j

represent the length of the prefixes of a and b being considered

at each step. The term 𝑙𝑒𝑣𝑎,𝑏(𝑖, 𝑗) therefore denotes the distance

between the first i characters of string a and the first j characters

of string b.

The Levenshtein distance is very useful for spell checkers and

autocorrect systems, where it can suggest corrections for

misspelled words by finding dictionary entries that have the

smallest distance from the incorrect user input.

III. METHODOLOGY

This paper will analyze one method of deciphering the

Vigenère cipher by “guessing” the key length using index of

coincidence calculations coupled with dynamic programming

for efficient processing, followed by breaking each letter of the

key using the goodness of fit Pearson’s chi-square test.

The implementation of the program was written in Python

with no external libraries used, to exemplify how easy the

calculations used are. Some snippets of the source code will be

shown in this paper, though if you would like to see the full

implemetation you may refer to the appendix.

We measured the efficiency and effectiveness of the

technique by measuring the time for the deciphering of the key

and also whether the deciphered key is the correct one or not,

and how far is it from the correct key using Levenshtein distance

measurement. The test was done in two groups: the same key

with different text lengths, and the same text with different key

lengths. For each group there were three variations each, totaling

six tests.

All tests was conducted on a Lenovo Legion 5i Pro Gen 7

Laptop, equipped with an Intel i7 12700H processor and Nvidia

GeForce RTX 3060 GPU.

IV. IMPLEMENTATION

A. Vigenère Cipher

To test the cracker effectively, we need to be able to encrypt

and decrypt the any data used for the experiment. And to ensure

the cipher is efficient we need to implement them from scratch.

The implementation of the Vigenère cipher is as follows.

Figure 3. Implementation of the Vigenère cipher

Source: Author’s documentation

The implementation uses a loop to iterate through each letter

in the lowercase text and a separate index to iterate through the

key. This is separated so that the key index does not move when

the current iteration’s character in the text is not an alphabet,

such as digits or symbols. Furthermore, for conciseness, the

decryption function uses the same function as the encryption

with the difference being that the shift is subtracted instead of

added.

B. Statistical Calculations

The statistical calculations incorporated in the program are

index of coincidence and goodness of fit test using Pearson’s

chi-square test. Each of these statistical tools will also require

calculating the occurences of each letter int the text.The

implementation details is as follows.

1. Frequency Table

The frequency table for the letters is implemented as a

python dictionary with the letters as the key and the

frequency as the values. The function that populates the

dictionary is the following.

Figure 4. Implementation of the letter frequency counter

Source: Author’s documentation

2. Index of Coincidence

The index of coincidence is calculated according to (1),

where the numerator is the sum of the 2-permutation of each

letter and denominator is the 2-permutation of the entire text.

The code is as follows.

Figure 5. Implementation of index of coincidence

calculation

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

Source: Author’s documentation

3. Goodness of Fit Test

The goodness of fit test is implemented according to the

Pearson’s chi-squared test with the formula (2). We used the

text’s letter frequency dictionary as the observed data and

store English’s letter frequency as a hardcoded dictionary for

the expected data, where both data is then used as parameters

for the Pearson’s chi-square test. The code implementation

is as follows.

Figure 6. Implementation of goodness of fit test

Source: Author’s documentation

4. Levenshtein Distance

The Levenshtein distance implemented is separated into

two functions, the first one to calculate the actual distance

that returns an integer for the distance, and the second returns

a float that denotes the percentage of similarity between the

strings. The source code for both functions is shown in Fig.7.

Figure 7. Implementation of Levenshtein distance

Source: Author’s documentation

As can be seen from the source code, the similarity

percentage calculations is done using the distance acquired

from the distance calculation function and compares it to the

length of the string. While the distance calculation itself is

an implementation of the formula at (3).The Levenshtein

distance will be used to compare if the key acquired from the

key solver with the actual key used to encrypt ciphertexts.

C. Key Cracker

The key cracker can be separated into two steps, the key

length cracker and the full key recovery. The length solver

utilizes index of coincidence along with dynamic programming,

while the full key recovery leverages goodness of fit test on the

caesar shifted text. The details for each implementation is the

following.

1. Key Length Solver

The key length solver begins by iterating through a range

potential key lengths. For each length being tested, the the

ciphertext is arranged into a matrix where the column length is

that of the key length. This arrangement has the effect of

grouping together all characters that were encrypted by the same

letter of the key within each columns.

After the text is partitioned, the solver analyzes each column

of the matrix individually, where the index of coincidence is

calculated and stored. The coincidence values for the columns is

then unified into a single fitness score that represents how likely

the text is to be composed of monoalphabetic substitutions when

organized by that specific length. The fitness score is tabulated

for future comparison, this is where dynamic programming is

used for efficient computation.

Figure 8. Implementation of key length solver

Source: Author’s documentation

After populating the score table, the final step is to select the

best length. The solver examines the table to find which key

length produced the best fitness score, which is the closest score

to the standard English IC (approximately 0.067). It achieves

this by calculating the absolute difference between the scores

with the target value, selecting the key length that minimizes the

difference. The attained key length is then used in the full key

recovery.

Something we need to note is that the result is not always

perfect. Since repeated sequence is technically also correct as a

key, the solver sometimes gives out key lengths that are

multiples of the actual key used. For better explanation, if we

encrypt a text with the key “newkey”, then instead of returning

6, the solver sometimes returns 18 as it is a multiple of 6,

resulting in the key “newkeynewkeynewkey”, which for a

sufficiently long text, is also technically the correct key.

2. Full Key Recovery

Once the key length is found, the next step of the attack is

recovering the actual key string. The essence of this stage is that

the previously complex polyalphabetic cipher has now been

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

successfully reduced to a number of independent and much

simpler monoalphabetic ciphers.

The key recovery process is done by iterating through each

column of the constructed ciphertext matrix, and solving for one

character in the key at a time. For each column, the solver must

determine the Caesar shift (a value from 0 to 25) that was used

to encrypt the letters for that column through exhaustive search.

The exhaustive search is done in a simple loop, that iterates

through all 26 possible shifts, from 'A' to 'Z'. In each iteration of

this inner loop, it performs a trial caesar cipher decryption on

the column's text using the current shift. Each of these decrypted

versions of the column is then scored using a goodness of fit test

(Pearson’s chi-square test). This test results in a quantitative

score for how closely the distribution of the letterns within the

decrypted text matches the statistical distribution of letters in the

English language. A lower score indicates a better fit, suggesting

the text is more likely to be meaningful English.

Figure 9. Implementation of full key cracker

Source: Author’s documentation

After testing all 26 shifts for a single column, the algorithm

then examines the table of 26 fitness scores. The shift that

produced the lowest score (best fitness score) is then identified

as the correct shift value for that column. This numerical shift is

then converted to its corresponding alphabet character, and

appended to the key string. This entire process is repeated until

a complete key is constructed. Finally, as a refinement to the

result, to address the repeating key problem mentioned in the

key length solver section, a function is applied to this key to find

the shortest repeating sequence. This ensures correct handling

of cases where the resulting key length was a multiple of the true

key, ensuring the most concise version of the key is returned.

D. Other Functions

Implementations other than the functions detailed previously

includes utilities such as text processors used for preprocessing

and postprocessing the texts that are used in the program, such

as text cleaner, matrix builder. The source code for such

functions will not be shown here for brevity of the paper. If you

would like to explore them, you may refer to the appendix.

V. TEST RESULTS AND ANALYSIS

To ensure a thorough evaluation, the implementation was

tested with six total variations, with three variations of key used,

and three variations of text used. The parameters evaluated in

the test are the execution time, and the accuracy of the key

cracker. The objective of these tests to observe how the accuracy

and time varies based on the different variations of the

experiment to see cases where the solver is useful and where it

might not be so.

The test was done with two group: The same key with

different texts and the same text with different keys, the

parameters used in these variations is displayed on Table I and

Table II. Note: the lengths specified in the table is the length of

the alphabets in the texts, meaning spaces, symbols and

punctuation is not counted.

Table I. Plaintexts used in the experiment

Text Length
Wherever a process of life communicates an eagerness to him who lives

it, there the life becomes genuinely significant. Sometimes the eagerness

is more knit up with the motor activities, sometimes with the perceptions,

sometimes with the imagination, sometimes with reflective thought. But,

wherever it is found, there is the zest, the tingle, the excitement of reality;

and there is importance in the only real and positive sense in which

importance ever anywhere can be. I remember standing on a street

corner with the black painter Beauford Delaney down in the Village

waiting for the light to change, and he pointed down and said, Look. I

looked and all I saw was the water. And he said, Look again, which I did,

and I saw oil on the water and the city reflected in the puddle. It was a

great revelation to me. I cant explain it. He taught me how to see, and

how to trust what I saw. Painters have often taught writers how to see.

And once youve had that experience, you see differently.

788

Because that’s all there is. The response. This is not to dismiss

the immense difficulty of any of these ordeals. It is rather, to

first, be prepared for them — humble and aware that they can

happen. Next, it is the question: Will we resist breaking? Or will

we accept the will of the universe and seek instead to become

stronger where we were broken? Death or Kintsugi? Fragile

or, to use that wonderful phrase from Nassim Taleb,

Antifragile? Not unbreakable. Not resistant. Because those that

cannot break, cannot learn, and cannot be made stronger for

what happened. - Ryan Holiday

462

So, if you cannot understand that there is something in man

which responds to the challenge of this mountain and goes out

to meet it, that the struggle is the struggle of life, then you won’t

see why we go. - George Mallory

175

Table II. Keys used in the experiment

Key Length

good 4

preparation 11

incomprehensibilities 21

The result of the tests are shown in tables below. To see the

full document of the results, please refer to the repository linked

to in the appendix.

Table III. Test results of various text lengths using a key

with length 11 (preparation)

Text length Cracked key Accuracy Runtime (ms)

Short (175) preparatibn 90.9091% 0.00622296333

Medium (462) preparation 100% 0.00887727737

Long (788) preparation 100% 0.01295781135

Table IV. Test results of various key lengths on long text

(Text 1, 788 length)

Key length Cracked key Accuracy Runtime (ms)

Short (4) good 100% 0.01490426063

Medium (11) preparation 100% 0.01300430297

Long (21) epezoes 19.0476% 0.01162767410

Makalah IF2211 Strategi Algoritma – Semester II Tahun 2024/2025

According to the test results, the solver works very quickly

with all runtime under a 10th of a second, even for long texts,

this highlights how insecure the Vigenère cipher can be,

although cracking accuracy is not perfect.

From the tests concerning variable text lengths, the runtime

grows relatively linear according to the length of the texts, with

of course, the shorter texts having shorter runtime. However, in

the case of the short text (175 characters), the solver fails to

perfectly determines the key, missing it by one letter. This yields

this group an average accuracy of 96.9697% and average

runtime of 0.009352684017ms.

Meanwhile for the group with variable key lengths, we start

to see interesting results. The runtime is actually the opposite of

what we can expect from the key lengths, with the shorter key

length taking the longest time, although the longest key length

results in the solver estimating the key length to be shorter than

the medium while also longer than short. From this result we can

also see that the solver cannot effectively solve a sufficiently

long key, with the 21 characters long key only able to achieve

19.0476% accuracy.

Overall, from the results of experimentation of the program,

firstly it is found that the solver does not work well with short

ciphertexts, this is to be expected as statistical data requires

bigger samples in order to more correctly estimate certain

values. It is also found that the solver works best for shorter key

lengths, because a shorter key will result in longer column

lengths, which provide larger sample size for the goodness of fit

test, rendering it more accurate .

When we examine the runtime however, although there are

slight differences across the different variables, we can

confidently conclude that the solver works very efficiently with

the total runtime of the program being only 0.07088541ms,

thanks to the usage of efficient statistical tools along with the

utilization of dynammic programming.

VI. CONCLUSION

This paper demonstrates a complete method for the

cryptanalysis of the Vigenère cipher, a system once touted to be

amongst the strongest classical ciphers, through modern

statistical and algortihmic computations, highlighting the

insecurity of classical ciphers, and why we opt for modern, more

mathematically sound cryptographic schemes instead.

The program uses index of coincidence along with dynammic

programming in order to correctly determine the length of the

key from only knowing the ciphertexts. Then it utilizes the

goodness of fit test with exhaustive search to recover the full key

string. Finally it uses the Levenshtein edit distance to measure

the accuracy of the solver’s recovered key.

The empirical results confirms and highlights the

vulnerability of the Vigenère cipher, as every cases requires no

more than 1/10th of a second to break the key. However the

analysis also revealed the practical limitations of the method, as

the solver is dependent on having a sufficiently long ciphertexts

to produce stable and accurate results. The solver is also shown

to not be very effective if the ciphertext was encrypted with a

sufficiently long key. Even with those practical drawbacks

however, it is important to note that no matter how long the key

used for the cipher is, it is still an insecure cipher, which can be

broken more effectively with more advanced strategies.

VII. APPENDIX

a. Github repository for this project:

https://github.com/grwna/vigenere-cipher-cracker

b. Youtube video for the paper explanation:

https://youtu.be/uIdOuJ3il1k

VIII. ACKNOWLEDGMENT

The author would like to thank God for His endless blessings

and guidance, as without it, this paper would not have been

written succesfully. The deepest thanks also extended to my

lecturer for Algorithmic Strategy, Dr. Nur Ulfa Maulidevi, S.T,

M.Sc. for her dedication to guide students with patience and

expertise through this course.

The author would also like to thank family and friends for

their constant, unwavering support and encouragement, which

have been very important throughout the writing of this paper,

and especially this academic journey.

REFERENCES

[1] GeeksforGeeks, "Caesar Cipher in Cryptography," GeeksforGeeks, May

23, 2024. [Online]. Available: https://www.geeksforgeeks.org/caesar-
cipher-in-cryptography/. [Accessed: Jun. 21, 2025].

[2] GeeksforGeeks, "Vigenere Cipher," GeeksforGeeks, May 09, 2024.

[Online]. Available: https://www.geeksforgeeks.org/dsa/vigenere-cipher/.
[Accessed: Jun. 21, 2025].

[3] R. Munir, "Program Dinamis (Bagian 1)," Course Material, STEI ITB,

2025. [Online]. Available:
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-

Program-Dinamis-(2025)-Bagian1.pdf. [Accessed: Jun. 22, 2025].

[4] R. Munir, "Program Dinamis (Bagian 2)," Course Material, STEI ITB,
2025. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-

Program-Dinamis-(2025)-Bagian2.pdf. [Accessed: Jun. 23, 2025].
[5] W. Soyinka, "What is Dynamic Programming?," Spiceworks, Apr. 12,

2024. [Online]. Available:

https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-
programming/. [Accessed: Jun. 22, 2025].

[6] C. Shene, "Vigenère Cipher: Index of Coincidence," Michigan

Technological University. [Online]. Available:
https://pages.mtu.edu/~shene/NSF-4/Tutorial/VIG/Vig-IOC.html.

[Accessed: Jun. 21, 2025].

[7] JMP, "Chi-Square Goodness-of-Fit Test," JMP Statistics Knowledge
Portal. [Online]. Available: https://www.jmp.com/en/statistics-

knowledge-portal/chi-square-test/chi-square-goodness-of-fit-test.

[Accessed: Jun. 22, 2025].

STATEMENT OF ORIGINALITY

I hereby declare that this paper is an original work, written

entirely on my own, and does not involve adaptation, translation,

or plagiarism of any other individual's work.

Bandung, 22 June 2025

M. Rayhan Farrukh, 13523035

https://github.com/grwna/vigenere-cipher-cracker
https://youtu.be/uIdOuJ3il1k
https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/
https://www.geeksforgeeks.org/caesar-cipher-in-cryptography/
https://www.geeksforgeeks.org/dsa/vigenere-cipher/
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/25-Program-Dinamis-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/26-Program-Dinamis-(2025)-Bagian2.pdf
https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-programming/
https://www.spiceworks.com/tech/devops/articles/what-is-dynamic-programming/
https://pages.mtu.edu/~shene/NSF-4/Tutorial/VIG/Vig-IOC.html
https://www.jmp.com/en/statistics-knowledge-portal/chi-square-test/chi-square-goodness-of-fit-test
https://www.jmp.com/en/statistics-knowledge-portal/chi-square-test/chi-square-goodness-of-fit-test

